3 research outputs found

    Supernovae feedback propagation: the role of turbulence

    Full text link
    Modelling the propagation of supernova (SN) bubbles, in terms of energy, momentum and spatial extent, is critical for simulations of galaxy evolution which do not capture these scales. To date, small scale models of SN feedback predict that the evolution of above-mentioned quantities can be solely parameterised by average quantities of the surrounding gas, such as density. However, most of these studies neglect the turbulent motions of this medium. In this paper, we study the propagation and evolution of SNe in turbulent environments. We confirm that the time evolution of injected energy and momentum can be characterised by the average density. However, the details of the density structure of the interstellar medium play a crucial role in the spatial extent of the bubble, even at a given average density. We demonstrate that spherically symmetric models of SN bubbles do not model well their spatial extent, and therefore cannot not be used to design sub-grid models of SNe feedback at galactic and cosmological scales.Comment: Accepted by MNRA

    The impact of turbulence on supernovae shockwaves

    No full text
    The momentum and energy injection from supernovae is one of the main feedback modes, and is therefore key to the understanding of galaxy evolution and star formation. However, due to low resolution, large scale galaxy simulations often have issues with accurately modelling supernovae, and therefore rely on sub-grid models. This is especially true for the injected momentum, where capturing the momentum generating adiabatic phase of SNe, although important, is impossible to self-consistently model in large scale simulations. Previous studies have shown that the final momentum injected only has a weak dependence on the surrounding density, and that the detailed structure of the interstellar medium (ISM) is at large irrelevant when considering the momentum. However these studies lacked accurate modelling of the turbulence in the ISM, and instead resorted to static models, where the velocities of the gas were ignored. In this work, we start by retrieving a known semi-analytic solution of the early and important adiabatic Sedov-Taylor stage, responsible for most of the momentum generation. This solution is then compared to a series of full hydrodynamical simulations using an adaptive mesh refinement code, called RAMSES, with varying mean density of the surrounding ISM. With the inclusion of atomic cooling, the evolutionary stages of supernovae remnants are recovered, with the final momentum pp found depending on the surrounding hydrogen density nn as p∝n−0.15p\propto n^{-0.15}, in agreement with previous studies. We then adopt a model of turbulence by \cite{turb}, which was calibrated to produce power spectra, density and velocity distributions based on the conditions in giant molecular clouds (GMCs). With this model of the surrounding ISM, the geometry of the SNe shocks changes drastically, preferring channels of less dense gas, leaving higher density filaments mostly intact. However the evolution of momentum and energy of the system still follows the same trend as in the homogeneous case, reaching a similar peak momentum. The momentum was found to decrease with time, which is not predicted in the homogeneous case, but the decay appears to be on longer time scales. This reaffirms the previous results, stating that the detailed structure of the ISM only has a negligible effect on the momentum and energy of the early stages of SNe. Nevertheless, the SNe does show a tendency of generating outflows of low density gas rather than affecting the high density regions, which could have further impacts on SFR and galaxy evolution as a whole.Supernovor Ă€r nĂ„gra de kraftfullaste hĂ€ndelserna vi ser bland stjĂ€rnor. NĂ€r stjĂ€rnor, mycket mer massiva Ă€n vĂ„r egen, brĂ€nner upp sitt brĂ€nsle tynar de inte bara bort, utan exploderar i vad vi kallar en Typ II supernova. PĂ„ motsatta sidan kan lĂ€ttare stjĂ€rnor i sina sista tillstĂ„nd som vita dvĂ€rgar fĂ„nga upp för mycket massa och explodera som Typ I supernovor. BĂ„da dessa fallen har en stor betydelse för utvecklingen av galaxer. Utan dem hade inga grundĂ€mnen tyngre Ă€n jĂ€rn existerat i de mĂ€ngderna vi ser, dĂ„ majoriteten av dessa endast kan skapas i den extremt varma explosionen. Supernovor Ă€r ocksĂ„ viktiga i att skjuta ut gas frĂ„n galaxer genom att skapa massiva vindar. Utan dessa vindar skulle stjĂ€rnor födas för snabbt och förbruka gaserna i galaxer. Detta skulle innebĂ€ra att galaxer inte hade haft tillrĂ€ckligt med gas för att fortsĂ€tta föda stjĂ€rnor Ă€n idag. I och med supernovors pĂ„verkan pĂ„ universumet vi ser, Ă€r det intressant för astrofysiker att förstĂ„ hur dessa explosiva hĂ€ndelser utvecklas. Men supernovor, som med mycket inom astronomi, utvecklas under vĂ€ldigt lĂ„ng tid. DĂ€rav kan observationer endast ge en ögonblicks bild, vilket begrĂ€nsar vĂ„r tillgĂ„ng till fysiken bakom dem. DĂ€rav anvĂ€nder astrofysiker ofta sig av datormodeller för att fylla i bilden, med högupplösta simuleringar som kan Ă„terskapa en detaljrik bild av supernovor, liksom andra aspekter av astronomi. Men nĂ€r större skalor inom astrofysiken simuleras, sĂ„ som galaxer, sĂ„ kan inte dagens datorer komma upp i en tillrĂ€cklig upplösning för att simulera supernovor utan att simuleringen tar för lĂ„ng tid. DĂ€rför anvĂ€nds oftast vad som kallas "sub-grid modells", för att inkludera supernovor Ă€ven om upplösningen inte kommer ner i dem skalorna. För att skapa dessa modeller har tidigare studier simulerat supernovor pĂ„ mindre skalor för att se hur de utvecklas i olika medier. Dessa simuleringar har tagit hĂ€nsyn till den omgivande gasen runt stjĂ€rnor, och sett att bland annat energin och rörelsemĂ€ngden pĂ„verkas av mĂ€ngden av denna gas. Men dessa simuleringar har hittills inte inkluderat gasens rörelser, utan anvĂ€nt sig av en stillbild pĂ„ hur den borde se ut. I verkligheten rör sig den interstellĂ€ra gasen slumpmĂ€ssigt, i vad som kallas turbulens, och den gör sĂ„ supersoniskt, det vill sĂ€ga snabbare Ă€n ljudets hastighet. Denna turbulens innebĂ€r inte bara att gaserna rör sig, utan Ă€ven att det bildas tjockare och tunnare skikt-liknande strukturer, som man kan se i t.ex. rök. Eftersom hur gasens rörelser pĂ„verkan pĂ„ supernovor inte har undersökts Ă€n, sĂ„ vet vi Ă€nnu inte hur markanta de Ă€r. Projektet som har gjorts till denna rapport har försökt simulera supernovor i ett mer realistisk, rörligt medium Ă€n vad som har gjorts tidigare. Med dessa simuleringar visar vi att trots att supernovorna fĂ„r annorlunda former, sĂ„ pĂ„verkas inte den slutgiltiga energin eller rörelsemĂ€ngden markant. Vi visar Ă€ven att eftersom explosionen föredrar att fĂ€rdas genom tunnare gas, sĂ„ kan enskilda supernovor trycka bort den tunnare gasen, medan de lĂ€mnar kvar den tjockare regionerna. Detta kan pĂ„verka hur mycket gas som en enskild supernova skjuter ut, och dĂ€rmed hur effektiva de Ă€r pĂ„ att reglera stjĂ€rnformation

    The astronomical consequences of primordial black holes

    No full text
    In the radiation or early matter dominated eras of the Universe, there is a theoretical possibility for the formation of black holes (BHs). These primordial black holes (PBHs) have been thought of as a possible candidate for dark matter (DM), and an attractive one at that as it would explain DM using only baryonic physics. Constraints from theory and observations such as microlensing has nearly excluded the existence of large amounts of PBHs in most ranges of BH masses. However, there are still three mass ranges that remain relatively unconstrained and could therefore make up a large fraction of DM. These include asteroid mass (∌ 10[sup]13[\sup] − 10[sup]14[\sup] kg), sub-lunar (∌ 10[sup]17[\sup] − 10[sup]19[\sup] kg) and stellar mass (10[sup]31[\sup] − 10[sup]32[\sup] kg) PBHs. This project focuses on what impact a large population of PBHs in the lower mass ranges would have on stellar populations, and if any further constraints on PBH masses can be inferred from this. Focusing on three environments; the galactic centre, solar neighbourhood and dwarf galaxies, we consider the collision, capture and settling of small PBHs inside of stars such as main sequence star, White Dwarfs (WDs) and Neutron Stars (NSs). As the PBHs that we consider are so low mass, if they make up a significant fraction of the DM their number density would be high, and therefore collisions between them and stars would be frequent. The PBHs are small, so during the collision the PBHs simply fly through the star. However due to energy dissipation into the medium of the stars, the PBH can become bound, and over multiple subsequent orbits lose more energy until they have become completely trapped inside of the star. Once this happens, the star is consumed by the PBH. This process of disrupting stars cannot be too efficient (as otherwise stars could not exists), which previous research has used to put constraints on the abundance of low mass PBHs based on the survival of star. We model this energy dissipation, integrating the trajectories of the PBHs through a target star. We find that the energy dissipation is small, and therefore PBHs end up on too wide orbits. Due to the wide orbits, and long orbital periods, the PBHs are therefore susceptible to being scattered by intruding stars. As the energy dissipation is weaker for lower mass PBHs, and therefore their subsequent orbits become larger, this puts a lower limit on the mass range for PBHs were they can settle inside of stars with this process. This is important, as in the denser environments, were collisions and capture is the most frequent, the probability for an intruding star to eject the PBH is higher. As such, the mass range PBHs can have in order to settle is often already constrained by microlensing constraints. Previous research on the capture of PBHs in stars have not taken this into account, and therefore their results may be significantly changed. In addition to attempting to capture onto single targets, we also consider capturing in binary stars and planetary systems. As the orbits of the target bodies have comparable velocities as that expected of the incoming PBHs, the three body interaction can exchange energy and angular momentum between the PBH and the binary. Preforming n-body simulations, treating the PBHs as test particles, we find that this exchange more often than not lead to the PBHs gaining energy, and are subsequently ejected from the binary. Furthermore as the energy change due to the three body interaction is higher than that of the energy dissipation into the medium of the star, this is the dominant process. Therefore we suggests that the settling of PBHs into stars in binary systems is improbable, invalidating previous research which has determined merger rates of systems containing a star consumed by a PBH, without considering the three body interaction. Finally we estimate the rate at which the consumption of a white dwarf or neutron star would be observed. Using a model for a milky way equivalent galaxy and a NS population synthesis for the galactic distribution of NSs, we determine the cosmological consumption rates of WDs and NSs. Assuming that the consumption of a NS or WD is either similar to Type 1a supernovae or gamma ray bursts, we determine the observable rate of such an event. We find that, due to the aforementioned scattering by intruding stars during the settling of a PBH inside of the target, the observational rate is only significant for mass ranges already constrained by microlensing, and we are unable to derive further constraints on the abundance of PBHs.Inom modern astronomi Ă€r mörk materia en av dem viktigaste byggstenarna i universum. Även om vi inte kan se mörk materia, tror vi att uppemot 85 \% av all materia bestĂ„r av det. Faktum Ă€r att vi behöver denna mĂ€ngd för att förstĂ„ hur stjĂ€rnor rör sig runt Galaxen, och hur galaxer formas. Trots dess betydelse för vĂ„r nuvarande förstĂ„else inom astronomi har vi inte kunnat identifiera vad mörk materia skulle kunna bestĂ„ av. De mest populĂ€ra teorierna tror att det skulle kunna vara smĂ„ partiklar, men dessa har Ă€nnu inte hittats, ens i vĂ„ra mest avancerade detektorer. En annan teori för vad mörk materia skulle kunna vara Ă€r vad som kallas urĂ„ldriga svarta hĂ„l (primordial black holes pĂ„ engelska). PĂ„ tidigt sjuttiotal kom Steven Hawking pĂ„ att i dem första sekunderna av universum skulle svarta hĂ„l kunna bildas. Vi vet inte om detta faktiskt har skett, men om vi skulle kunna hitta ett sĂ„dant svart hĂ„l skulle det ge oss insikt i det tidiga universum. Dessutom, om tillrĂ€ckligt mĂ„nga av dessa svarta hĂ„l bildades skulle de förklara all mörk materia i universum. Dessa urĂ„ldriga svarta hĂ„l skulle vara unika frĂ„n de vi redan vet existerar, eftersom de nĂ€stan skulle kunna ha vilken massa som helst, frĂ„n nĂ„gra hundratusendelar gram, till miljoner gĂ„nger solens massa. Detta skiljer urĂ„ldriga svarta hĂ„l frĂ„n de svarta hĂ„len vi vet existerar, och dĂ€rmed skulle vi kunna urskilja dem i observationer. Även om vi inte kan utesluta dem helt, med noggranna observationer och undersökningar har vi kunnat sĂ€ga att svarta hĂ„l med specifika massor inte finns i tillrĂ€ckligt stora mĂ€ngder för att förklara mörk materia. Men, det Ă€r fortfarande sĂ„ att all mörk materia skulle kunna bestĂ„ av smĂ„ svarta hĂ„l, dĂ€r vĂ„ra observationer inte kan se dem. Dessa svarta hĂ„l skulle antingen kunna ha massor liknande asteroider, eller c.a.~tusen till hundra tusen gĂ„nger mindre Ă€n mĂ„nen. Eftersom svarta hĂ„l Ă€r kompakta skulle de minsta av dessa inte vara mycket större Ă€n en atom, medan de största skulle vara lika stora som vĂ„glĂ€ngden för synligt ljus. I detta projektet har jag undersökt vad som skulle ske ifall all mörk materia bestod av dessa smĂ„ urĂ„ldriga svarta hĂ„l. Specifikt har jag teoretiskt försökt se vad som hĂ€nder om de skulle kollidera med stjĂ€rnor. Eftersom det skulle finnas extremt mĂ„nga av dessa svarta hĂ„l, sĂ„ hade dessa kollisioner vara vanliga. PĂ„ grund av att svarta hĂ„len Ă€r vĂ€ldigt smĂ„, Ă„ker de för det mesta bara igenom stjĂ€rnan, men genom diverse fysikaliska processer skulle svarta hĂ„len saktats ner av stjĂ€rnans tĂ€ta innehĂ„l. Om svarta hĂ„len saktas ner tillrĂ€ckligt kan de bli gravitationellt bundna till stjĂ€rnan, och om de Ă„ker igenom stjĂ€rnan flertal gĂ„nger fastna inuti stjĂ€rnan. Om detta sker skulle stjĂ€rnan tillslut svĂ€ljas upp av svarta hĂ„let. Jag har anvĂ€nt mig av tidigare studier och förbĂ€ttrat deras teoretiska modeller, samt skapat datorsimuleringar för att se hur ofta ett urĂ„ldrigt svart hĂ„l fastnar inuti stjĂ€rnor och liknande objekt, sĂ„ som vita dvĂ€rgar och neutronstjĂ€rnor. Jag har visat att denna processen Ă€r mycket mindre effektiv Ă€n tidigare trott, bland annat genom att ta hĂ€nsyn till att ett svart hĂ„l som blir bunden till en stjĂ€rna först hamnar lĂ„ngt bort frĂ„n stjĂ€rnan innan de Ă„ker igenom igen. DĂ€rmed finns det en stor sannolikhet att en annan stjĂ€rna kommer tillrĂ€ckligt nĂ€ra för att via gravitationell kraft dra bort svarta hĂ„let. Jag har Ă€ven visat att det Ă€r nĂ€st intill omöjligt att svarta hĂ„len fastnar i en stjĂ€rna som Ă€r en medlem i ett binĂ€rt stjĂ€rnsystem, eftersom gravitationskraften frĂ„n de tvĂ„ stjĂ€rnorna Ă€r för vĂ„ldsam, och det lilla svarta hĂ„let kastas ut. Jag har anvĂ€nt mig av mina resultat för berĂ€kna hur ofta vi skulle kunna se stjĂ€rnor bli uppĂ€tna av urĂ„ldriga svart hĂ„l. FastĂ€n detta sĂ€llan sker, hĂ€nder det tillrĂ€ckligt ofta för neutronstjĂ€rnor och vita dvĂ€rgar för att vi skulle kunna se det om vi observerar flertal galaxer. Dock gĂ€ller detta endast för svarta hĂ„l med massor som vi redan kan utesluta genom tidigare observationer
    corecore